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A CLASS OF SCHUBERT VARIETIES

YUNG-CHOW WONG

1. Introduction

Recently, the author proved that in a real, complex or quaternionic Grass-
mann manifold provided with an invariant metric, the minimum locus is a
Schubert variety and the conjugate locus is the union of two Schubert varieties
(cf. [71, [8]). The purpose of this paper is to study these Schubert varieties in
detail.

Let F be the field R of real numbers, the field C of complex numbers, or the
field H of real quaternions, F**™ (n > 1, m > 1) an (n + m)-dimensional left
vector-space over F provided with a positive definite hermitian inner product,
and G,(F"*™) the Grassmann manifold of r-planes in F**™. The Schubert
varieties which we shall study are defined by

V,={ZeG,(F*™): dm(Z N P) > [},

where P is a fixed p-plane in F**™, 0 < p < n 4+ m, and | is a nonnegative
integer. It is easy to see that V;, = G, (F**™) if | = max (0,p — m), and V,
is empty if [ > min (n, p).

Let W, = V,\V,,, and let k be an integer such thatmax (1,p —m 4 1) < &
< min (n, p). Then

V= Wk U Wk+1 U---u Wmin(ﬂ,p) .

Roughly speaking, our main result is:

Vy is the disjoint union of a Grassmann manifold W, », (Which reduces
to a point if p=n) and min(n, p) — k “tensor” bundles W (k <1< min(n, p)
— 1) whose base space is G,(F?) X G,_,(F**™"?), whose standard fiber is the
tensor product (F*Y)* @ F?~! of an (n — D-dimensional right vector space and
a (p-— D-dimensional left vector space, and whose group is the tensor product
GL(n — ,F)® GL(p — L, F).

In §2, we describe a covering of G,(F**™) by coordinate neighbourhoods.
In § 3, we prove that each V, is a Schubert variety and obtain the local equa-
tions of ¥V, in a coordinate neighbourhood in G,(F**™), which show that V',
is the singular locus of ¥,. In § 4, we obtain a covering of the manifold W,
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by coordinate neighborhoods. In § 5, we complete our study of ¥, by analysing
the bundle structure of W,.

2., Local coordinate systems in a Grassmann manifold

For the moment, we use the symbol G, (F**™) (n > 1,m > 1) to denote the
set of all n-planes in F»*™, We shall define on it an atlas which will turn it
into an analytic manifold. In F**™, let {x,---,x,,,} be a fixed system of
rectangular coordinates defined by an orthonormal basis {e,, - - -, e, »}. Denote
by U,,...;, the subset of G,(F**™) consisting of all those n-planes with equations
of the form

(2.1) xar - ; xikzikar ’

where Ziya, ATC scalar constants, 1 < k< n,1<y<m, and (G, ---,i,, a,
-+ +,a,) Is a certain derangement of (1, ---, n + m) such that {, < ... < i,
a; < -+ < an. This determines a local chart (U,,...; ,Z;,..;,) in G, (F**™),
whose coordinate neighbourhood is U,,...;, and whose local coordinates are the
nm elements of the n X m matrix Z, ..., = [Zik'lr]‘ By means of the coordinates
Zigayr WE identify U, ..., with a Euclidean nm-space.

The following lemma will be proved:

Lemma 2.1. (a) The coordinate neighbourhoods U,,...,., for all possible
choice of (i, ---,i,) from (1, ---,n + m) such that i, < -.. < i,, form a
covering of G, (F**™).

(b) The two sets of local coordinates for an n-plane belonging to U, ...; N
Ui,.... are rationally and analytically related.

Thus, provided with the atlas determined by the local charts (U,,...;,, Z;,....,)
whose indices i, < .- . <i, take on all their possible values, the set G, (F?*™)
becomes an analytic manifold of F-dimension nm, the Grassmann manifold
G,(F**™). An important special case is the projective space FP™ = G,(F™*")
of F-dimension m. In particular, FP' is the “circle”.

For the proof of Lemma 2.1(a) and for later use, we first give a definition
and prove Lemma 2.2 below.

Let B be an n-plane in F**™, and B! its orthogonal complement, so that
F**™ = B @ B* (direct sum). Then the projection n,: F**™ — B is the map
which sends each element of F**™ into its component in B. For another n-
plane Z in F** ", we say that Z projects onto B if the restriction n,| Z: Z— B
is an onto map.

Lemma 2.2. An n-plane Z in F**™ belongs to U,,...,, iff Z projects onto
the n-plane spanned by the vectors e;, - - -, e;,.

Proof. By definition, Ze U,,...;, iff the equations of Z can be reduced to
the form (2.1). Thus, an n-plane Ze U,,...,, is the set of vectors

2.2) L xgen + 2 (2 %t 0
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where x;, are scalar parameters. Since the projection of this set of vectors in
the n-plane B spanned by e;,, - - -, e, is the set of vectors }] x;.e;,, Z projects
k

onto B.
To prove the converse, we assume that Z projects onto B, and let f;, be the
vectors of Z which project onto the vectors e;, of B. Then we have

f;:k - eik = }k: Zik“7e07 s

where z,,,, are nm scalars. Obviously, the n vectors f;, are linearly independent,
and therefore span the n-plane Z. Hence Z is the set of vectors (2.2), and con-
sequently, has equations (2.1).

We now prove Lemma 2.1(a). By Lemma 2.2, it suffices to show that, for

any given n-plane Z in F**™, there exist, among the vectors e, - -+, e, n,
vectors e;, - - -, e;, such that Z projects onto the n-plane spanned by them.
Let

=2 fue <j<nl<i<nt+m
s

be a set of n linearly independent vectors which span Z. Then there exist

suitable linear combinations f;,, - - -, f; ©of f,, - - -, f, such that
(2.3) fio =€y + Lile,, - ve,) (1 <k<n),
where each of the ¥, means “some linear combination of”, and (i, - - -, i,,
@, - - -,a,) is a derangement of (1, -.-,n + m). Now we can see at once

from (2.3) that Z projects onto' the n-plane spanned by the vectors e, - - -¢;_,
as was to be proved.

To prove (b) of Lemma 2.1, let Z be an n-plane belonging to U,...;, N Uy, .. -
Then Z can be represented by either of the following two sets of equations
(2.4) X = Z xl'kzik"r 3

k

ar
(2.5) xné = ; x%z%a; .

Let us eliminate the m variables x, from these 2m equations by substituting
(2.4) in (2.5). Then the result is a set of m homogeneous and linear equations
in the » independent variables x,,. Equating the coefficients of x,_ to zero, we
obtain a set (x) of nm equations in the local coordinates Zipa, and Zf,;a;, each
of the terms in these equations being of the form

(2.6) 1, 2y 2 or  Zi.Zi

g et -
Since (2.4) and (2.5) are two sets of equations representing the same x-plane
belonging to U,,...,, NU i1...iz» (2.5) is uniquely determined when (2.4) is given
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and vice versa. Therefore, equation (%) must admit, in U,,...; 0 U;;...i;, a unique
solution for Z Tyt in terms of Zy., and a unique solution for Zige, In terms of
Z: fat moreover because of the special forms (2.6) of the terms in (), the
Z;, .o, and the z,,, are rational functions of each other (see Van der Waerden
[6 § 371). This completes the proof of (b).

The above proof of Lemma 2.1 may seem trivial at first sight, but we have
made sure that it is valid not only for the cases F = R and F = C but also for
(the non-commutative) case of F = H.

3. The Schubert variety I, and its local equations

We first explain what the Schubert varieties are (cf. [1, Chap. 4], [3, Vol.
II, Chap. 14]). Let

(3.1) 0<g < -~ <a, < m

be a non-decreasing sequence of integers, and
(3.2) Ly C - CLy < Fm

be a nested sequence of vector subspaces of F**™, whose dimensions are indi-
cated by their subscripts, and suppose that

(@, ++,a,) ={ZeG(F"™): dim(Z N Lo;. ) =] 1<ji<n}.

Then (a,, - - -, a,) is a closed sub-variety of G,(F"*™), whose F-dimension is
equal to the sum a, + --- + a,. Wecall (a,, - - -, a,) a Schubert variety, and

(33) dlm (Z n La,j+1') 2 j (1 g ] g n) ]

the Schubert conditions.

The Schubert variety (a,, - - -, a,) depends not only on the sequence of in-
tegers a,, - - -, a,, but also on the choice of the sequence of vector subspaces
(3.2). However, with a fixed sequence of integers a,, - - -, a, satisfying (3.1),
the Schubert varieties defined by different sequences (3.2) are congruent to one
another in F**™, so that they are also congruent under the induced group of
transformations in G, (F**™).

We now prove

Theorem 3.1. Ler {x, - - -, X, »} be a fixed rectangular coordinate system
in F**™ determined by the orthonormal basis {e,, - - -, e,. ), P an integer such
that 0 < p < n + m, and P the p-plane spanned by the vectors e, - -+, e,.
Let | be any integer such that max (1,p — m + 1) < [ < min (n, p). Then

V,={ZecG,(F**™): dim(Z N P) > I}

is the Schubert variety
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(ab s A Gy, "'aan) = (P - 17 e, P — l:ma ,m) ]

whose F-dimension is equal to nm — l(m — p + ).
Proof. Let us construct the sequence (3.1) by using the following integers:

(11:"'=0L=p———l, aHl:---:an—_—m,
and the sequence (3.2) by using the following vector subspaces of F**™:

La1+1 = g(en ) ep——l+l) s
La2+2 = g(eu R ‘fep—L+2) »

............

LaL+L = g(e], ...,ep) = P,

Laz+x+l+1 = g(el’ ety €py €pyqy t 0 '7em+l+x) ,

where ¥ means “the vector subspace spanned by”. Now it can easily be
verified that in this case the set (3.3) of Schubert conditions is equivalent to
the single condition dim (Z N P) > I. Hence our theorem is proved.

We have seen in § 2 that when a rectangular coordinate system is fixed in
Fr+m the Grassman manifold -G,(F»*™) is covered by the local coordinate
systems (Us,....,» Z;,...,,), where i, < ... < i, run through all the integers 1,

..,n + m. In the following, we shall use the coordinate neighbourhoods
Uiyoiparean—p» Where h is some integer such that 1 < A < min (n, p), i, <
-« » < i, run through the integers 1, ..., p, and @, < +-- < &,_, Tun through
the integers p + 1, -- -, n + m.

We now prove

Theorem 3.2. Let ] and h be two integers such that

max{(l,p —m 4+ 1)< L,h < min (n,p) .

Then the Schubert variety V, defined in Theorem 3.1 has the following
properties :

(@) Ifh<lthenV, N U,..parecan_, is empty.

(by If h > 1, then the equations of V,NU,,.
dition for the h X (m — p + h) matrix

wipagran_p €XDress the con-

Zil“i “ Lisahm-pen

G4 e

Zihﬂ; T Ziha‘;n—pﬁ-h
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to be of rank < h — L

(For definition and main properties of the rank of a matrix with elements in
a field, not necessarily commutative, see [3, Vol. 1, pp. 66-70].)

Proof. Let us use the following index systems:

I1<a<h, 1<d<p—h; 1<b<n—h, 1<V <m—p+h;

L < oo <y, iy < +-. < 1,_, are complementary in (1, ---, p) ;
a1<"‘<an_h,, Cl’{<"'<a’:,l_p+h_
are complementary in (p +'1, -+ ., n + m) .

The equations of an n-plane Ze U,,.. are

slpar-rean—p
Xit, = 3 Xi,Ziqi, T > Xa Zayins
(3.5) - ’
Xoj, = ; X, Zipal, + bZ XoyZayaths -

Therefore, the equations of Z N P are these and the following together:

(36) x“b f O 5 x”;l’ = O .

But on account of (3.6), equations (3.5) split up into the following two sets
of equations

3.7 Xige =
(3.8 0 =

Since the m + n — h equations (3.6) and (3.7) are independent, dim (Z N P)
< h. On the other hand, it is seen from (3.8) that dm(Z N\P)is A, h — 1,

- according as the A X (m — p + h) matrix [z;,.;,] is of rank 0,1, - - ..
From this it follows that if A < [, then dim(Z N P) cannot be > [, i.e., if
h <l then V, N U,,...ipa1.cur,, is empty. For & > I, dim(Z NP) > [ iff the
above matrix is of rank < A — [. Hence our theorem is proved.

It follows from the definition of V, that V,,, is a subset of V', for which
dim (ZNP) > 1+ 1, and its complement W, = V,\V,,, is the set for which
dim(Z NPy =1 By Theorem 3.2, if A > 1+ 1,V NU,...; 0 can_p, 15 the
subset of V,NU,,...;,a...a,_, Whose points are such that the matrix (3.4) is
of rank < A — ! — 1, and its complement W, N\ U,,...;,.,...a,_, 1S the set of
points for which the matrix (3.4) is of rank 4 — [. For these reasons, we may
call the points in W, the simple points of V,, and those in V., the singular
points of V,. Of course, this definition is legitimate; moreover, it can easily
be verified that, in the case where F = Ror F = C, V,,, is indeed the set of
singular points of ¥, as defined in algebraic geometry (cf. [3, Vol. II, Chap.
10, § 14]).
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4. The set W, = V,\V,,, as a manifold

Let 7/, be as defined in Theorem 3.1, W, = V,\V,,,, and k& any iﬁteger
such that max (1,p — m + 1) < k < min (n, p). Then .

W, ={ZeG,(F**™): dim(ZNP) =1},

4.1)
Vk = WkUWk+lU s UWmln(n,p) 2

where the W’s are all disjoint, and

:Gn(F'P) ifp>n,
Wmin(n,p) it {P} if p=n,
= G (Frrm-P) ifp<nm.

Infact,if p > n,then W, ={Z: ZC P}. if p=nr, then W, = {Z: Z = P}.
If p<n, then W, ={Z: ZD P} = {Z: Z* C P*} which is homeomorphic
to G,(F**™ 7). Here Z*, P+ are respectively the orthogonal complements of
Z,P in Frtm,

We now prove

Theorem 4.1. (a) The subset W, of G,(F**™) defined by (4.1) can be
covered by the coordinate neighbourhoods

Uz'l-'

Cijayeerap g 2
where the indices have the ranges 1 < i, < --- <, <p,p+1<a, < --.

<an_LSn+m.

(b) The equations of W,n\ V.. in the local coordinates

ceijagereapg—1
l:[ziai;/] [Ziau;,,]}
(2ayiy ] [2Zayay ]

[Zz'aa;w] = 0 Py

in U, are

1resdjageeeapn~1

where the indices are as in the proof of Theorem 3.2 only with h replaced by 1.
(c) W, is an analytic submanifold of G,(F**™) of F-dimension

nm—lm—p-+D.

Proof. (b) is a special case of Theorem 3.2, and (¢) follows immediately
from (a) and (b). Therefore, we need only prove (a).

For convenience, we put ¢ = n + m — p, and denote by @ the orthogonal
complement of P in F”*™ and by =, the orthogonal projection F**™ — Q.
We recall that P is the p-plane spanned by the vectors e, - - -, ¢,, so that @ is
the g-plane spanned by the vectors e,,,, - - -, €,, (= e, n)-
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By LLemma 2.2, to prove (a), it suffices to prove that for any n-plane Z ¢ W,,
there exist, among the vectors e, - - -, e, m, n VECtOIS €, - - -, €5, €, - + +, o,
such that Z projects onto the n-plane spanned by them. Let Ze W, and X =
Z N P, and let Y be the orthogonal complement of X in Z. Since X is an /-
plane in P, it follows from Lemmas 2.1(a) and 2.2 that there exist among the
vectors ey, - - +, e,, | VEctors ey, - - -, e;, such that X projects onto the l-plane
spanned by them. Let f;, - - -, f;, be the vectors in X, which project on e,

- -, ey, respectively. Then

)

l

-ﬁl = € + a‘?1(ei;a ttt, e%_
4.2) .
S = ey + gl(ei‘iy cee, e%_l) .

Here and in what follows, ., ¥/, ¥’ each mean “a linear combination of”’.
Let

fi= "g;(epi—l’ Tty ep+q) + j{'(e“ c, ep) >
4.3) - C e e e
ﬂz—l = gln—l(ep+17 ) ep+q) + g:—l(en Tty ep)
be any set of n — I vectors which span the (n — )-plane Y. Since Z NP is
the kernel of the projection 7, | Z and dim (Z N P) = [, n,Z is an (n — -plane
in Q. But it is seen from (4.2) and (4.3) that this (# — [) plane is spanned by
the n — [ vectors

y{(epﬂ, MY ep+q), R g;,—l(egu-n * “ 'y ep+q) )

which must therefore be independent. Hence, it follows from (4.3) that there
exist suitable combinations £, , - - -, f,, _, of f;, - - -, fu_, such that

./;1 = e, + $l+1(e1’ Cr e €py €y ity eal’]_n+L) ,
4.4)
./:rn—z = ea,,-[ + gn(el, cc s €p eai’ °t .’e"[z—n+l) .
We have thus constructed, in (4.2) and (4.4), a set of n vectors f;, - - -, f;,,
[ -+ o for_,, Which span the n-plane Z. It is easy to see from the expressions
of these vectors that Z projects onto the n-plane spanned by e,, - - -, e;,,¢,,, - - -,

e,,_,- Therefore, by Lemma 1.2 we see that Z ¢ U;,...q,,....,_,, and part (a) of
our theorem is proved.

5. The manifold W, = V,\V,,, as a fiber bundle

We now prove the following main ;
Theorem 5.1. Let P be any fixed p-plane in F**™ (0 < p < n + m), and
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I any:integer such that max (1,p — m + 1) < [ < min(n,p) — 1. Then the
[rm — I(m — p + DI-dimensional submanifold

W, ={ZeG,(F*™): dim(ZNP) =1}

of G,(F**™) is a “tensor” bundle whose base space is the product manifold
G,(F?) x G,_,(F**™"?), whose standard fiber is the tensor product (F*H)* ®
F?-! of an (n — )-dimensional right vector space and a (p — [)-dimensional left
vector space, and whose group is the “tensor” product GL(n — I,F)®
GL(p — I, F) with the two subgroups acting on (F*~")* and F?~!, respectively.

Let (x,y) be any point in G(FP) X G,_(F"*™ 7). Then the fiber of W,
over (x, y) is the set of n-planes Z in F**™ such that Z [\ P is the fixed l-plane
x in P, and ToZ, i.e., the projection of Z in Q, is the fixed (n — D-plane y
in Q.

Let Un + m, F) be the group of motions in F**™ regarded as a group of
transformations in G,(F**™). Then the subgroup U(p,F) x U(q,F) of
U(n + m, F), which leaves P invariant, leaves W, invariant. It does not act on
W, transitively, but induces a transitive group of transformations in the set of
fibers of W,.

Proof. We first prove some preliminary results. For brevity, we shall
denote U,,...q01 0., DY Uy~ Let us first consider the transformations of local
coordinates in G,(F"*™). Any n-plane Z belonging to

Uiwy N Uggy © GoF™™™)
has the following two equivalent sets of equations:

Xir, = 2 XioZiq17, + 2 T
(5.1) ¢ ’
xa;)v = Za: xiaziaa;), + Zb: xahzabaé, ;

, = ; Xialsaiy, T Zb: X8, Za,d4, 0
(5.2

X, = Za: Xialiasy T Xb: Xs,28,85, >

where the z’s and 7’s are the two sets of coordinates of Z and

1<a<!, 1<a<p-—-1, 1<b<n—1,
1<V <p—n+l(=m—p+1D;
< - <y, ip < ... < i,_, are complementary in (1, -- -, p) ;
< e <y, o < oo < s

are complementary in (p + 1, ---,p + g(=n + m)) .
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The transformation (Z) = (2)g ;s ., between the coordinates z’s and %’s are
obtained by eliminating Xi, and Xay, from the 2m equations (5.1) and (5.2) and
then equating to zero the coefficients of x,, and x, in the resulting equations
(cf. proof of Lemma 2.1(b)). As is well known, in

Uiw N Ugye N Uy C G(F™™)

the transformations between the three sets of coordinates satisfy the following
compatibility condition:

(5.3) 8ij8iay 08 kpyiipy = Bikpyiiay -

Let us now consider W, which is covered by the coordinate neighbourhoods
Uiiey = Ui,.ooijayeran-, (cf. Theorem 4.1). Since the equations of W, N U,,, in
Uge are z;,,;, =0, and those of W, N U, in U ;4 are Z;,,, = 0, the relations
between the two sets of coordinates for the same n-plane in (W, N U,,,)N
(W, N U,,) is obtained in a similar way from the following two sets of equa-
tions (cf. (5.1) and (5.2)):

Xer, = > X817, + Zb: x‘,bz,,bi‘,ﬂ ,
(5.9 ¢

Aoy, = Zb: Yo Zaya, >

i, = Za: X1oZsain + Zb: X323, 54, 0
(5.5 o

Xap, = Zbl Xa,Z8,85 >

where the z’s and Z’s are the two sets of coordinates of the n-plane Z. In this
case, however, there are the following special properties:

(a) The two sets of coordinates Zayas, and Zﬁbﬁ;;' transform into each other
rationally and analytically in the same way as the two sets of coordinates for
an (n — [)-plane in

U N Upps,, © Gy Fm9)

ayerrap—1

(b) The two sets of coordinates z;,,,, and Z;,;,, transform into each other
rationally and analytically in the same way as the two sets of coordinates for an
{-plane in

Uil...-il ﬂ Ujl"'jl C Gl(Fp) .

(¢) The remaining relations between the two sets of coordinates for the n-
plane Z are reducible to

(5.6) Zﬁbja, — sum of terms of the form f(z,baé,)zabi&,g(zia%,) ,

where § (resp. g) is some rational and analytic function of the coordinates z, .,
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(resp. ziui&,). (Consequently, when Tigir, and Zy4yay, AIC held fixed, the two sets
of coordinates z,;,, and Z, ;. transform into each other by a homogeneous
and linear transformation with two-sided coeflicients.)

Thus, the transformation between the two sets of coordinates z’s and Z’s in
W, NU;,)NW,NU,,) is split up into three parts. Moreover, on account
of the compatibility condition (5.3) for the three sets of coordinates in
Uiy N Ujpy N Uy, © G(F**™), each of the transformations of coordinates
" described in (a), (b) and (c) above is compatible when three sets of coordinates
are involved. From these we can already see that W, has the structure of a
vector bundle whose base manifold is G,(F?) X G,_,(F**™?) and whose fiber
is the space of ordered (p — (n — D)-tuples of F-numbers. Let us now study
this structure of W, more carefully.

We take first the fibers in W,. For brevity, let us denote U,,...;, and U,,...., _,
by U, and U,,,, respectively. Then the fibre over a point (x,y) e U, X U,
of the base manifold G(F?) X G,_(F"*™?) consists of those n-planes Z in
W, N U, whose coordinates Zigir > Zapag, and Zayir, AIE such that Ziqir, and
Z,,q; are respectively the coordinates of x in Uy, and y in U, whereas z
are arbitrary. To find out what this fiber actually is, consider the n-plane
Ze W, N U,,, whose equations in F**™ are (cf. (5.4)):

i
ablul

Xy, = § XigZigir, T Zb XayZayir , >

a

5.7
xaf,; = Zb xabzabas, .

Since the equations of P are X, = 0,x,, = 0, the equations of the l-plane
ZPin P are

X, = Z Xi Zi ir -
L i “iaiaty,

Therefore Z N P is the point x of G,(F?) in U, with coordinates Ziqir,- On
the other hand, since the equations of @ = P+ are x;, = O and x, , = 0, the
equations of the (n — l)-plane z,Z in Q can easily be seen to be ¢

xaz, = }; XayZagas, -
Hence r,Z is the point y of G,_,(F**™~?) in U,,, with coordinates Zapap,

Thus we have found that the fiber of the bundle W, over the point
(x,y) e G(F?) x G,_,(F**™"P) consists of those n-planes Z in F**™ such that
Z N P is the fixed I-plane x and r,Z is the fixed (n — D-plane y.

Let us now find the standard fiber F, and the group G of the fiber bundle
W,. Guided by equations (5.6) and what we have just found out about the
fibers in W,, we take as F, the tensor product (F*~")* @ F?~* of an (n — D)-
dimensional right vector space (F"~!)* over F, and a (p — I)-dimensional left
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vector space F?~! over F. As the group G of the fibre bundle, we take the
tensor product GL(n — [, F) ® GL(p — 1, F) and define its action on F, by (cf.
[4, Prop. 2.4.1]):

4] & 3 — (31 &® gz)(Z1 ® %) = gl(z1) & gz(Zg) ,

where z,e (F" 9)*,2,e F?7',g,¢e GL(n — |, F), and g, e GL(p — I, F). More
precisely, this means the following. Let St be a basis of (F*~%)* and fi,, a basis
of F7=!. Then f*®f,, form a “basis” of (F*~)* ® F?~t such that every
element z of F, can be expressed uniquely in the form

= 5 (2, ®fy) = 5 (i@, 1)

where Zay1;,, € F are the components of z. If
g fk— alfd) = ; 589, s

&: fy, — &lfi,) = ; 82,5, fs0 5
then we set

1=1= @®8)@ = T (55880, © T e fin)
= 5 |13 2 @ 8850 ® ]

5.a’
We note that the components of 7 = (g, ® g,)(g) are
¥ m @,
ZuEiEr _bZa, gabubzabll’l,gi&,zal s

and equations (5.6) are of this from.
We can now describe the structure of W, as a “tensor” bundle by exhibiting

its main ingredients [5, § 2.3]:
(1) The protection z: W, — G,(F?) X G,_,(F**™"?) from W, to the base

space is defined by
Z—>(ZNP,y,Z) .

(2) The standard fiber F, is the tensor product (F*~')* ® F#~! of an (n — [)-
dimensional right vector space and a (p — /)-dimensional left vector space.
We assume that a “basis” £* & f;,  has been fixed in F,.

(3) The group G of the bundle is the tensor product

GL(n — LF)QGL(p — ILF)
which acts on F, = (F*")* @ F?~! by (8, ® £.)(z, @ z) = 8(z) & 8:(22)-
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(4) The base manifold G,(F?) X G,_,(F**™"7) is covered by the family of
coordinate neighbourhoods U, X U, such that, for each (ix), there is a
homeomorphism

Bliay - (U<i> X U(‘,)) X Fy— 2~ (Uy X Uw) = W, N U.,

defined as follows. Let ((x, y), z) be any element of (U, X U,,) X F,, and
Zigi, Zapay,s A0 Zoyey, the respective coordinates of x,y,z in U, U,,, and
F,. Then ¢,,((x, p), z) is the n-plane Z whose equations in F**™ are (5.7).
(5) The homeomorphisms ¢ ,,, defined above have the following properties:
(1) modum(x, 1,2 = (x, ).
(i) Let

Biiare s Fo— Fo

be defined by setting

¢(‘L’a)(x,y)(Z) - ¢(ia)((x:y), Z) .

Then, for any two (ia) and (jB) and for each (x, y) € (U, X U, ) N (U 5, X U ),
the homeomorphism '

~1 .
¢(jﬁ)(x,y)°¢(ia)(x,y) tFy— Fu

is given by (5.6); therefore, it coincides with an element of G, defined above
in (3). ’
(6) Finally, for any (ia) and (j3), the map

Einin: Ua X U) NWy X Ug) —G
defined by

g(jﬂ)(ia)(x’ » = ¢<—jlﬁ> e, ° P cx, 1

is analytic because the linear transformation (5.6) depends on z;,;, and z
rationally and analytically.

This completes our proof that W, has a fiber bundle structure.

Finally, let U(n + m, F) be the unitary group of transformations leaving in-
variant the hermitian inner product of F**™, i.e., the group of motions in F*+™,
Then the subgroup U(p, F) x U(q, F) of U(n + m, F), which leaves invariant
the vector subspaces P and @, leaves invariant the manifold W, but it does
not act on it transitively; this is because for any two n-planes Z,, Z,¢ W, we
have in general dim (Z;, N Q) # dim (Z, N @). However, the group U(p, F) X
U(gq, F) carries fibers into fibers and acts transitively on the set of fibers. In
fact, if x, x” are any two l-planes in P, and y, y’ are any two (n — I)-planes
in @, then there always exist some element 4, € U(p, F), which carries x onto

abab,
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x’, and some element k, € U(g, F) which carries y onto y’. Thus the element
(h,, hy) e U(p, F) X Ulg, F) carries the fiber over (x,y) onto the fiber over
(x’, y"). This completes the proof of Theorem 5.1.

Up to now, we have excluded the case | = max (0, p — m) = I, because
Vie={ZeG,(F**™): dim (Z N P) > L} is G,(F**™) itself and our results
obtained so far do not hold in this case. Now G, (F"*™) is of F-dimension nm,
and

Vier = {Z € Go(F™™): dim (Z N P) > |, + 1}

is a Schubert variety of F-dimension nm — (I, + 1)m — p + I, + 1) < nm.
Therefore, W,, = G, (F**™)\V,,,, is an open submanifold of G,(F**™), and

Gn(Fner) = Wlo U Wlb+1 u.-.- U.Wmin(n,P) ’

where W, .1, « * > W, 5 -1 are “‘tensor” bundles as described in Theorem 5.1,
and W ., p, is @ Grassmann manifold or a point as shown at the beginning
of § 4. Hence we have

Theorem 5.2. Corresponding to each integer p such that 0 < p < n + m,
there is a decomposition of G,(F**™) into a disjoint union of a sequence of
min (n, p) — max (0, p — m) + 1 submanifolds of decreasing dimensions, con-
sisting of an open submanifold, a number of “tensor’ bundles, and a Grass-
mann manifold (which reduces to a point if p = n).

There are three cases of special interest.

Case 1. p =m (so that g == n). Let us take P to be the m-plane 0 spanned
by the vectors e,,., - -+, €,,m, and let

V, = {ZeG,(F*™): dim (Z N 0Y) > I},
W, ={ZeG,(F*™: dim(ZN0L) =1} .

Then V, is G,(F**™) itself, and W, coincides with the coordinate neighbour-
hood U.,...,; both of these are of dimension nm. Moreover, V|, = V,\ W,, which
is of dimension nm — 1, is the boundary of W, = U,...,. It turns out that V| is
the cut locus of the point 0 ¢ G, (F**™) (see [7, Theorem 9(b)]).

Case 2. p = n (so that ¢ = m). Let us take P to be the n-plane 0 spanned
by the vectors ¢, - - -, e,, and let

V,={ZecG,(F**™):dim(ZN0) > 1}.

It turns out that the conjugate locus of the point 0 in a G,(R**™) is V,U ¥,
ifn<m is VUV, if n=m, and is V,UV,_,,, if n > m, whereas the
conjugate locus of the point 0 in a G,(C**™) or a G,(H*™) is V, | V., if
n<m andis V, UV, n.. if n > m (see [8]).

Case 3. p=n=1+ 1 (then g = m). This is the only case in which W,
can be a line bundle. In this case, W,_, is a line-bundle whose base manifold
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is the product of the two projective spaces FP™ and FP™. Let us choose P as
the n-plane 0 as in Case 2. Then ¥, consists of the single point 0. Hence,
V.., is the union of the line bundle W, _, and a point. In particular, for the
G,(R%), W, is a line-bundle over a 2-dimensional torus which can be made com-
pact by adding a point.

6. A remark

In their theory of harmonic functions on classical domains (i.e., the four
non-special types of irreducible bounded symmetric domains considered in the
theory of several complex variables), Hua and look [2] proved that the
boundary of each of these domains is the disjoint union of a finite number of
product spaces (i.e., trivial fibre bundles), so that the closure of each of the
classical domains is a “chain of slit spaces” with the closures of the product
spaces as slits. Our results in this paper would seem to suggest that the
Grassman manifolds and certain Schubert varieties are “chains of slit spaces”
of a more general type on which a similar theory of harmonic functions might
be constructed. However, the referee kindly points out that this is not the case
because the more recent works of 1.1. Pjatetski-Shapiro, A. Koranyi and J.A.
Wolf have shown that the more general spaces do not carry nonconstant holo-
morphic functions, nor do they carry much of a space of harmonic functions.
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